
Designing a program. Programming the design.
Steinar Kristoffersen

steinkri@ifi.uio.no
University of Oslo

Norway
ABSTRACT
For most rational systems development methods, distinct phases of construction work is envisaged: Analysis,
design, programming, testing, etc. Different methods are often contrasted to each other with regards to the amount
of design that is required before implementation, the importance for testing continually or the prominence of
future users’ involvement. However, little evidence can be found that one method is actually better than the
others. This paper is concerned with design activities within programming. It presents an ongoing study of
programmers developing software for mobile telephones, and in particular it looks at the ways in which a design
is “re-fabricated” as part of the common practices of programming. Such re-fabrication is social and under-
determined. Knowing more about how design and programming is inextricably linked with a set of rather vague
instructions, practically explicates problems and possibilities of distributed programming projects, e.g., in an
outsourced setting. In the theoretical domain, this paper shows how well ethnomethodologically-informed notions
of “epistopics” (of design) and “tendentious instructions” apply to programming as a scientific as well as deeply
social undertaking.

Keywords
Ethnographic studies of programming, design as epistopic category, tendentious talk and under-determination.

1. INTRODUCTION
Creating the software is arguably the most costly part of information technology development projects [1]. This is
not due to programming alone, however:
[M]ost projects to develop production engineered software products spend more of the project's effort in activities
leading to a document as their immediate end product, as compared to activities whose immediate end product is
code [2].
This quote can be taken as inspiration to ask: Do these activities contribute to the executable result at all,
notwithstanding the aspect that they do not contribute directly to create code? And vice versa, what do the non-
coding activities of programming look like (with reference to their social achievements and output in terms of
documentation, plans, design rationale, etc.)?
Many properties of the envisaged IT development projects are highly similar across software engineering methods
and life-cycle models [3]: Starting from current and future users’ requirements (explicit, emerging or tacit),
designers can create a manifest design which is exogenous to the task of programming it. This design is an artifact
in itself, which expresses the same requirements on a more detailed level of abstraction from “needs”, but more
abstract still than code. Stepwise refinement down through several levels of abstraction is one way of managing
the complexity of software projects. One typically moves from requirements via some form of conceptual design,
a technical- or functional design and the software architecture. A chronologically ordered sequence of functional
activities comprises a life-cycle for the project, which drives it forward through such horizontal levels of
abstraction or vertically compartmentalized designs, towards completion [4]. Different and distinguishable
competencies ought to be brought to bear on each of the activities, one of which is, notably, design.
On the background of the abysmal results coming out of almost 50 years of systematically attempting to se
software development as a software engineering activity [5, 6], this paper challenges this view. It is particularly
motivated by the recognition that many software engineering problems arise, arguably, due to factors which are
not covered by the methods. “the thin spread of application domain knowledge, fluctuating and conflicting
requirements, and communication bottlenecks and breakdowns [7].“

This paper presents an ethnomethodologically-informed analysis of software development indicating that many
activities which are categorically termed “design,” are not performed at all distinguishably from programming or
on another level of abstraction. It is, and can only be, performed by programmers as part of making a “cautious”
set of specifications, tendentious instructions [8] and mutual obligations about what they are going to do next.
Other examples show how design is an invitation to discuss a problem, rather than the conclusion of a problem-
solving exercise, in a fashion that carefully avoids pinning down the exact solution; rather it maintains a wide
solution space for programmers to figure it out. In the first instance, it is inseparable from programming as an
activity, and in the second it is inseparable from the programmer as an individual member.
One potentially significant implication of these observations is that software engineering ought not to be treated
primarily as a stepwise refinement of a set of requirements’ specifications from one level of abstraction to the
next, or one phase accumulating the results of the previous one, at least not solely or prescriptively, inasmuch as
this perspective does not stipulate how the programming takes place. Instead, a complete respecification of
“programming” as a genuine form of co-operative work is warranted. The term “design” might be a useful
heading under which multifarious activities referring to problem solving, technical approaches and software
engineering “competencies” are loosely compiled. However, they seem to bear very only “familiar resemblance”
to the design work of other disciplines, some of which work closely with programmers in their projects (graphical
and industrial designers, business developers, etc). A future research agenda of the “language games” of design
could grow out of this appreciation that design ought to be treated as a deeper epistopic theme [9], rather than
simply as “given”.
The main theoretical contribution of this paper is that it shows how a perspective of design as “under-determined”
in a similar fashion to Garfinkel’s use of tendentious instructions [8], and that this is exactly the skilful and social
accomplishments of a design space that is sufficiently open and “forgiving” to allow programmers to recognize
and solve hard technical problems in a virtual world which they all see differently. This view on design can
compose an “epistopic” for ethnographic as well as software engineering research, to the extent that one fruitfully
sees programming more broadly as constituting ways of creating knowledge, technically as well as socially, about
the problem at hand, instead of simply an applications of “boxed” skills. Thus, it is also an application of theories
from social studies of science to the “more” ordinary activities of programming.

2. RESEARCH SETTING AND METHODS
2.1 The setting
This paper describes work in a small software company which has specialized in developing complete and partial
application suites for mobile phones. This means that they work on contract, usually for a baseband chip producer
or handset vendor, in projects that are “owned” by vendors, usually in close alliance with one of the large
operators. The company in question is currently engaged in projects for many of the big actors in this industry.
Currently, the main thrust is on developing middleware for future phones. They need to integrate (or at least
provide hooks for integrating) support for services that they expect will be in demand. An integrated development
environment for mobile phones has to offer sophisticated call control (for unspecified handsets), a unifying event-
control architecture (for future applications) and a tailorable set of user interface components so that it can get the
“look-and feel” of models from many different vendors. The development takes place in a stepwise fashion,
loosely inspired by various agile software engineering methodologies. The programmers themselves talk about a
requirements-driven, yet flexible life-cycle, which is well documented within the company’s intranet. Examining
the web, however, shows that it is permanently in an initial and categorical state. The details of the projects, their
enactment, success and failure are only found in the “lived practice” of programming. The focus of this paper,
therefore, is on the common workaday interaction between the programmers themselves, if, when and as they do
programming.

2.2 The ethnography
The research presented here is based on approximately five full days of observation taking field notes and
recording a small number of samples from conversations taking place. The project is still ongoing, and more

material will continue to be compiled. The excerpts presented here, however, are only a small sample from a big
body of material showing stable and recurring patterns with regards to what constitutes design in this setting.
Ethnographic studies gained a strong foothold in CSCW in the nineties [10] and have become commonplace in
related fields such as Information Systems (IS) and software technology research lately [11]. As its popularity
continues to grow [12], it has perhaps become easy to fall into the trap of believing that ethnography is
straightforward, which it clearly is not [13]. This paper is not seeing ethnography as simply a suitable approach to
data collection; it is driven by ethnomethodology as its analytical frame of reference [14] and for serving that
ambition ethnography seems particularly suited. The “unique adequacy requirement” of ethnomethodological
analysis certainly points toward needing detailed empirical accounts [15], from which a minimal level of detail
needs to be excerpted in a paper such as this. Although this adds to the empirical bulk of argument and in some
instances might make it more cumbersome to read, hopefully it also makes it more worthwhile.
It would be beyond the scope of this paper to offer a detailed account of ethnomethodology’s program. Ample
discussions can be found in the CSCW literature [16-20] and beyond [8, 14, 15, 21]. This paper is under particular
influence from the studies of epistemological practices in laboratory settings [22, 23]. In terms of
ethnomethodology, most of the analytical support of this paper might be traced back to Michael Lynch’s work on
“the ordinary” practices of science and the use of commonly used categories of activities as epistemic topics [9].
A methodological ambition of this paper has been to show how the practical achievements of design observably
offer themselves as a starting point for a necessary respecification of “design” and “programming” in software
development. The fieldwork excerpts are examples, a “real-life” flavor of programming as and when it unfolds.
Abstract concepts such as “design” and “programming” (rather than the practices of designing or programming)
and the relationships between them are not seen as functionally or structurally governing the behavior
programmers, in this case.
In traditional software engineering, the concept of a process life-cycle comprised by distinguishable stages of
“design” and programming” which so often fails to “deploy” properly in software engineering, seems to have
maintained its stability and “meaning” through theoretical reflection rather than empirical inspection [24]1.
Instead, the methodology of this paper has guided it towards providing empirical evidence of the production of
such “orderly properties,” as and when programmers discuss their code.
Ethnomethodology is not concerned with creating big theories about external “normative” structures that (may or
may not) stipulate behavior; rather, it sees such “theories” as part-and-parcel of the production of social order
which all members of a community is engaged in, through and for the sake of “getting the job done”. However,
that should not be taken as an indication of ethnomethodology only yielding conservative or uncommitting
results. Its position is certainly one from which poorly formulated theories about social activities can be
successfully identified, attacked and respecified. This paper ought to bee seen as subscribing to such ambitions.

3. RESULTS
In the following sections, transcripts from field notes will be presented. Perusing the excerpts, the reader one
might find it useful to be aware, however, that the author doing the fieldwork of this paper is a trained
programmer and has been working as a programmer for many years. Some might think that programming thus
appears different and perhaps more orderly or understandable to this fieldworker than to others who are not
themselves programmers. One of the main implications of the analysis if the material which follows is that this
does not seem to be the case: Not because everybody can do programming, but because the observable acts of
programming lend themselves are social rather than technical. “Lived programming” consists of a discourse
which seems, word by word, just as intelligible (or perhaps mainly exactly the opposite) to non-programmers as to
programmers. Understanding the instructions and opinions that programmers exchange in discussion does not
require great technical skills, however, and it might not even refer to an objectively distinct piece of code,

1 An interesting observation in this respect is that there are actually several journals devoted to the empirical study of software engineering,

e.g., Empirical Software Engineering. An International Journal. Editors-in-Chief: V.R. Basili; L.C. Briand. ISSN: 1382-3256 (print
version). ISSN: 1573-7616 (electronic version). Journal no. 10664. Springer US.

functionality or requirement. Rather, it is about creating those entities as recognizable for all, with the capabilities
that they have in terms of functionality. Requirements and design are made programming. Realizing the code that
compiles and executes requires a specific skill, of course. Code has to be written and written correctly. Designing
(for) it, on the other hand, does seem to be a different matter.
Most of the programming activities take place in one large room; four of the programmers have their desks in this
room. The manager has a room adjacent to this, and there is another room with two programmers working next to
the first room. Conversations between the programmers may generally be heard across the room(s), and it often
initiates ad-lib meetings which comprise discussions like those typically referred to below. A similar workspace
of one room is provided on the floor below.
The most prominent aspect of practical problem solving between programmers is how far the problem is from
actually being solved in just about any popular of formal understanding of that notion. Consider the following
examples:
Two programmers are in a discussion about the layout of a screen with a menu:
1: (We could)2 change between white and blue background there, but that is not the most important
2: There are two menus
1: That is one thing
2: That
1: No, no, no, yes, yes, yes,…
2: A parallel line (just) there
The notion of design as a precise and rational problem-solving exercise, which is prevalent within in software
engineering is challenged in this sample. Similarly, the idea that programmers “divide and conquer” a problem
either by partitioning it into manageable smaller problems or by stepwise refinement from higher to a lower level
of abstract, which is in many ways the hallmark of software engineering [25], is not much present. The excerpts
presented here do not reject that this is how programming as an individual activity, as practical programming,
takes place; that is outside the scope of this investigation. On the other hand, there is something else entirely that
may be observed when more than one programmer go about solving their software development problems
together, and we need to bear in mind that this is the domain of most software engineering and its methods.
Design is usually considered to be a highly goal-oriented activity, and this is made explicit in many tools which
support co-operative aspects of design [26]. But that is not what we observe in our fieldwork. “Design” seems to
start by working out and suggesting descriptions, rather than solutions. Moreover, it is hard to see any problem
driving the dialogue. Actually, it is hard to see how somebody can, at all, understand from the beginning what
exactly is being brought onto the design “agenda”. And this is exactly the point. Design is a lot about prioritising,
figuring out what to do when, and eventually, how. From then on, it is the programming. This skilful working
towards a problem definition “from the solution out” characterizes many of the instances of co-operative design
observed in this study.
For instance the following excerpt represents a situation that starts when the manager (a trained programmer
himself) comes back from the kitchen with cup of coffee. Walking through the office, he spots one of the
programmers working with a calendar application.
1: That calendar application, you have not
2: Hmmm,..

2 The excerpts have not been formally marked up, and the paper does not pertain to be based on conversational analysis or any formal

“grounding” of theories from data. Numbering distinguishes different people within excerpts, but do not identify individuals as such
across them. (An explication in parenthesis) means that the field workers has filled in “blanks”, which could be a result of unintelligible
conversation, poor note taking or simply that participants did not speak a complete sentence. When the next line is tabbed, there has
been a perceived overlap of speech, if not the turn- taking was judged to be sequential. Ellipses means that the utterance has been drawn
out ((Double parenthesis)) are used for ‘meta-comments and explanations.

1: Yes, yes, but, it can be the case that we should
2: Okay, but, it is a bit strange
1: No I have not
2: Yes
1: Yes, well, but could it not be the case that we ought to, no! That was a little,
2: is it not a bit strange “user-wise” (when) you switch between the days, and then you switch?
1: Go up there ((points to the screen)) , and then you can show,…,
do you have any options as well, … okay, that’s fine
(switches with no introduction to speak about the videophone application that they are implementing)
okay, but then take the picture
But then you can show it directly, come down here ((on the screen)),
 And then one down and so, hello-o!
 ()
 Yes, video and call control and (then) time (it) and such, yes that would have been really
nice.
The most striking aspect of this conversation is the way in which options are “explored” in a way that is
completely under-determined, to the extent that it does not at first seem fitting simply to describe it using simply
the term “indexical”. One has to start by asking, again, not only do we know what they are talking about, but
(how) do they know what they are talking about? Assuming that they are not trying to eliminate alternatives,
which is what one would normally find in an idealized conceptualization of “design [27],” and instead that they
are trying to establish the “fact” of what it is that they are looking at; of what it is that they are trying to achieve;
this makes programming similar to the more general tendentious use of instructions described by Garfinkel:
By tendentious, I mean that I want to talk about [instructions] with an abiding and hidden tendency. More, I am
going to know what I’m talking about long before I reveal to you just what I am talking about. And I would hope
that finally we’ll come to a point, after I’ve gone through some materials, that you will have seen, with some
surprise, that in fact this thing that I had in mind all along, being in the end revealed, is in fact what you had in
mind all along as well, except that I had a rival version of what you might have in mind, and more that that: you
would see that I mean to be talking to what you really mean, before you’re able to say it, and that I mean to be
talking to the point of a revealing corrective of what you might have in mind, and even a radical corrective [8].
But how do programmers “find out” what they do not know that they are looking for in an artefact that so
effectively hides everything that is not currently displayed? It seems that they “point into” a possible solution
space by suggesting impossible operations and manoeuvres with curiosity and stubbornness, keeping their “local-
and-continuous” specification work open enough for it to be impossible for them to get it wrong, and this wait
simply holding off until the programmer who has implemented the module in question, himself or herself
proposes what it can be. We shall se another example of this, in which the work need to connect an application to
the underlying hardware architecture seems intentionally to be left “under-determined”:

1: The device layer is on top,…
2: Hmm, that is something that we can
1: But, come on, it is possible to make this real easy,…
2: We could simply implement it.
1: As long as it is an object, you don’t have to go ((no indication of where?!)).
(…)
2: Okay, but what he ((don’t know if this is the programmer or the code)) does not have is a, what’s it now, a
directory scan
1: He ha ho ((laughing))
2: But we need to get that sorted
1: Yeah, right, that,…
2: Great stuff
1: Fair enough
2: No, that was kind of just a “bulletpoint” ((assume figurative speech)), not a, you know, general, mucking about
1: No, No-o,…
2: That won’t be a problem, really
1: Jolly good
2: Yes, yes
The excerpt starts with a proposition which in an “architectural sense” seems either false or obvious, namely that
“The device layer is on top,…” since the idea of the device layer roughly speaking is to be an abstraction level
right on top the hardware. So either it is not “on top” of the application because that defies the purpose (and
would be really “poor design”), or it is clearly on top of the hardware (but only figuratively speaking, of course,
since a real time OS and basic input/output is on top of the machine code which is on top of the digital circuits,
which are abstraction of physical wiring, etc). So, what do we see happing here? It seems that programmers
intentionally offer rather vague descriptions about the invisible parts of the artefact that they are working on,
ostensibly suggesting what it is like currently and what it could be made to be, whilst leaving room for
interpretation and re-action from the other party.
The following excerpt shows how tightly knit the projection of “design” and “implementation” is in the
discussion between the programmers. It is vital that they get to a (perceived) common understanding of how
everything is done so far, and to which extent the future design options must be limited by the overarching
concern of not having to do that work again. The practical implications of getting code to actually execute in a
“stubborn” environment of device drivers and laboratory hardware within the deadline, have to be brought to bear
on otherwise proudly “techie” mottos, which show deep respect for clear cut designs, rational problem solving
and general solutions. This means that is not only recognized that although one usually starts from the ambition of
making “beautifully designed” code and ending up with “working code.” Accounting for code “as is” in a fitting
way is part and parcel of “design” rather than design being a set of instruction for what and how to code. In this
excerpt the implementation on a pixel-by-pixel level is connected with its own design. It starts by “connecting
with” how it is today, but carefully not really specifying that (either) in much detail:

1: It is the way that it is done today
2: Yes, I agree, but we cannot just let the focus go
1: And then all the menus, well, that come this way, they can just render as if they are the root ((of a hierarchy of
screens)), or be in the root, and so,…
2: That i-is the way that it is implemented today
mmm, in,…
 fact
1: and then that key goes up to the root
2: Okay, that is the way the,…, that it is implemented now
The quoted discussion seems to be in harmony with ideas from ethnomethodology about accountability being a
constitutive element in the action which is (then) accounted for. It seems here that a “hack” is acceptable if it is
unavoidable, but that is not the most important point, which is that it becomes an acceptable hack by accounting
for it as such. It certainly did not become an acceptable hack “by design,” because the coding that comprised the
hack had already been done and designating it as a hack conspicuously made it possible to keep it, for now.
1: So, if we can implement implement ((repeats)) the keys this way, then we can keep it in the wrong,..
(…)
Then we can simply keep it, internally,…
 ((interrupting himself?))
yes, yes, it has to be called something else, then
2: The only point then, just that thing is a little hack, okay?
 I mean, it is okay, in one way
1: If you are rendering menus on top of each other, there is not reason that they shall need to
consider that issue, of things being behind each other
2: The only aspect that we’re dependant on is if we are going to light and put out that one there ((points))
1: Eh, yes, that that should not
2: No, sure, I agree
Only thing is that we need a focus manager
So, what we see is that some elements can be kept as an acceptable (and even admirable?) hack simply by
renaming it, which also means that it architecturally can be kept in the “wrong” module. This is one example of
design (modularization of functionalities) and implementation (naming), being tied together. Even more
expressive, the discussion continues to make room for a particular type of dialog design for the screen of a mobile
phone, the menus, to take on a new role as the (underlying) focus manager. This is observably a retrospective fit
of existing code to an emerging design, which is coming out of requirements that are only now being firmly
established; namely that a separate focus manager is needed. One succinct way of putting it is that coding is at
this very moment producing a rationale for itself in terms of a ‘requirement’, which is the requirement of having
to have a focus manger. This requirement was not there before programming started talking about the code as part
of their examination of the code together. The possibility of the menu system working as a focus manager was not
in question when the menus were design. It is unlikely that mixing such unrelated functionalities within one
designated module would be passable as a quality design, anyway, had it been proposed. Now it “comes in
handy,” and it is co-opted into its new role on the backdrop of a continuous rehearsal of “what the code is like”
today:

2: Eh, yes, that menu is (of course) some sort of focus manager, as long as you ((as a user)) are navigating in the
menu (there), then it is like a small focus manager, for those ((screens)) that are beneath (it)
1: Yes, yes,
()
Dialogue windows that,…
2: And that is okay, actually
1: I still think that we have to keep in mind that a menu is something special
2: Yeah
 and that other dialogues are different
1: And that dalogues that can get the focus from an application is one thing and that a menu is something else
2: ((With emphasis, louder:)) What kinds of dialogue windows ((orig. “screens,” which would technically
translate into display for most GUI programmers)); is it that has a need to let it ((the key press)) leak through to
other windows?
1: (Well, I think that we have,…)
Yes, yes
1: You see, the point is, isn’t it, that it comes (it comes) the problem comes back again one day if we are going to
implement something that we do not have today and that we will probably not have in a long time, because we’re
making a…
2: Yes
1: ()
and if you have a S-view ((from a previous phone GUI-project)), or something like that, then you have to, it is
after all the input box which needs to receive the keys, but if you push it down ((Not the key itself? It is a touch
screen, but more likely the input box ’down’ into the hierarchy in terms of ’design’)) then it ought to leak through
unless we’re talking about the browser and then focus needs to be shifted onto the one that is
2: And by implementing it in the fashion that we’ve been talking about just now
1: Now we are ready to do just that
Drawing again our attention to the under-determined and indexical aspects of the design, these excerpts show that
it is not at all stipulating of what is implemented, but rather yielding to “the requirements of working code” when
a design is being truly co-constructed in order to make the code passable as sufficiently “good” within
requirements, standards, company kudos, etc. The code is where it is, and the “input box” (whatever that is) is
already contained in a module somewhere. “If you push it down” does not imply that it can be pushed further
down or lifted higher up, although, of course, the code can be re-factored according to some plan relying on such
terms. Similarly, it does not matter (for the object) if it “ought” to let key presses “leak through” its even handler
to another module. It either leaks or it does not. That is not the (main) point, which is: The code can be read with
the essential property of “leaking through” from the current input box, from where it is, as meaningfully,
justifiably and understandably complying with a design in which it is “pushed down” and this reading makes that
particular design in itself an expression of an order which is meaningful, justified and understandable.
In exactly the same way the documentation that exist is referred to as either “coming into” fit with the “code in
working order,” or as documentation that is no longer accurate:
1: But, then, the documentation that we have is not too bad, then. I gather? It might end up having to be changed
a tad, but
 Yes, we are very confident that this is the way that it will be lifted
 it just sort of

2: But, we’re ought to get around to concluding,...
 Do you ever need more than the parent
1: (But, but,...)
 Yes, but that does not have anything to do with this?
3: Maybe you do not really need it, but it is sometimes nice to be able to ask if you have got focus
4: The way that we are doing this today, then,…
1: The way that we are doing it today is how we do it
I think, I think,…, halo-o! folks, defining the focus, that is, using what we have today,
That is what seems to work
And then we can use the focus manager
2: It is so simple, what we have today, because it just works.
 Yes, yes
 I really suggest that we do not change too many things at once. Then suddenly it stops
working and, as (we) have said, defining focus, that is an implementation issue
Having demonstrated in many excerpts how a compiled and running implementation of a program, is subjected to
“design” as a continuous recasting of its properties, it is worthwhile to consider how in this last excerpt first the
documentation is in a similar way “retrofitted” to match “how we do it today” and then at the end it is actively
underspecified to the extent that the team can wait and see what comes out of the next few hours of programming
before they sit down and look at this again. As a “design” issue, the implementation of “focus” was meticulously
scrutinized to devise for it a matching design. Re-classifying it as an implementation issue happens when it is
stated that; “as (we) have said, defining focus, that is an implementation issue,” because before that happens it
has, to the contrary, been treated as a design problem. One could say that this re-classification now leaves the
problem back with the responsible programmer to re-design and implement until it is time (again) to bring the
topic of the focus manager into the social domain of design. From an analytical point of view, we could say that
transferring a design job to another epistopic category of implementation, in itself becomes a way of “under-
determining” inasmuch as it is design-wise dealt with, “for now,” whilst still leaving room for the programmer to
decide how to do it
The implicit treatment of an artefact as “in the need of” one type of epistemic attention or the other, as
exemplified in these excerpts with reference to design, implementation and documentation, are not guided by the
normal and normative framework of methods within software engineering. In this respect, there is a clear
difference between the rules that extend from software engineering, and their practical achievement.

4. DISCUSSION OF THE RESULTS
Much critique has been raised against the waterfall-model of software development, which is implicated by the
first strand of work mentioned here. [28]. It was forcefully defended, however [29], and even today most
“modern” life-cycle models rely on some of the same philosophy [3]. Even radical revisions of the life-cycle idea
itself, relies on some of the same assumptions:
Design work is frequently piecemeal, concrete, and iterative. Designers may work on a single requirement at a
time, embody it in a scenario of user interaction to understand it, reason about and develop a partial solution to
address it, and then test the partial solution— all quite tentatively—before moving on to consider other
requirements. During this process, they sometimes radically reformulate the fundamental goals and constraints of
the problem. Rather than a chaos, it is a highly involuted, highly structured process of problem discovery and
clarification in the context of unbounded complexity (…) [30].”
This is interesting, because it still documents the design process as:

• Starting from requirements (rather than a process which produces requirements)

• A structured process (only with finer granularity), oriented cyclically towards resolving goals,
(re)discovering problems and on the basis of that qua evaluation reformulating the goals.

Storey et al. suggest that on the basis of cognitive models of program comprehension, a tool for programmers
ought to comprise at least functionality to support goal-driven examination, an overview of the architecture, the
construction of multiple mental models, indicate a path of focus and current focus [31], etc. However, these are
not activities in which programmers seem to be particularly engaged, in order to do programming. Some of these
they, indeed, resourcefully and systematically avoid pinning down in order for them to maintain an “open design
space” of hints and clues which in a tendentious manner allows a common design to be established that “with
some surprise“ a design is revealed which is in fact what they had in mind all along [8].
Jahnke and Wahlenstein maintain that tools for software reverse engineering lean toward requiring a precise,
complete and consistent knowledge representation [32]; they enforce predefined process templates. Although this
intuitively limits their usefulness, on the background of the excerpts discussed in this paper it seems still quite
open whether a turn towards tool support for refining “imperfect knowledge,” would be much better. The concern
with knowledge and the specification of a problem-solving procedure which is recommended not only by Jahnke
and Wahlenstein, but similarly by innovators in design rationale systems such as gIBIS [33] and expert systems
(cf. AnswerGarden [34]) seem to represent, indeed, the opposite of what the programmers struggle
“methodologically” to be doing. Exogenous problem descriptions, background competencies and steps in the
procedure towards resolving “the” problem is exactly what the programmers in out case did not use, as part of
their co-operative design work.
It has been claimed that computer systems do not display their rationale:
A computer system does not itself elucidate the motivations that initiated its design; the user requirements it was
intended to address; the discussions, debates, and negotiations that determined its organization; the reasons for
its particular features; the reasons against features it does not have; the weighing of trade-offs; and so forth [30].
This is perhaps just stating the obvious, since these elucidations were never made clearly by programmers in the
first place. Programming might (of course) be seen as exactly a social activity which produces, rather than is
subject to the production of, motivations, requirements, features and design trade-offs. Moreover, and more
radically, these “design artefacts” are skillfully and carefully under-determined and perhaps even made exactly
“unspecifiable” enough, to work for programmers.
The practical implications are formidable: Programming cannot (or should not) be seen as a “result” of design,
which ideally and productively could be mapped from “a” design. There is always a need to do design work, and
probably an approximately equal type and amount of design work, regardless of life-cycle or documentation
techniques chosen. The dominant hypothesis for improved methods and tool support programmers seem to be that
removing design from programming simply moves it “upstream” and that can make it more transparent and more
manageable [35]. The alternative hypothesis, indicated by this paper, would be that it can only be performed “as
is” because it is a contituive element of programming itself. And, there is, in a sense nothing to “move”. Design
“works as design,” but is not and does not produce “a” design. Taken out of its programming context, it becomes
non-sensical.
Taking one step back, the biggest theoretical contribution from this paper is therefore perhaps only a formulation
and thus a critique (admittedly from an ethnomethodological point of view) of the functionalist character of many
theoretical perspectives in software engineering, CSCW and HCI. They are manifest in the waterfall life-cycle
model and the cognitive psychologists’ models of interaction [36], as well as in ideas of a design “rationale [26].”
Numerous design support tools have hence been suggested, explicating the work programmers do as designers,
i.e., by encouraging issues to be listed and prioritized, opinions made public and trade-offs weighted. This paper
seems to suggest that this established tradition needs to be complemented by research looking at how
programming relies on under-determined “matter” in the social web of programming, how opinions and
alternatives seem to become manifest and shared when-and-through they emerge as manifest and shared by the
programmers and consequently recognizing that there is room for much more radical re-specifications of the
methodological aspects of software development.

5. ACKNOWLEDGMENTS
Thanks to the programmers who allowed their work to be the inspiration and immense source of inferences made
within this paper.

6. REFERENCES
[1] G. Ooi and C. Soh, "Developing an activity-based costing approach for system development and implementation," SIGMIS

Database, vol. 34, pp. 54-71, 2003.
[2] B. W. Boehm and P. N. Papaccio, "Understanding and Controlling Software Costs," IEEE Transactions on Software

Engineering, vol. 14, pp. 1462-1477, 1988.
[3] L. R. Guimarães and P. R. S. Vilela, Comparing software development models using CDM. Newark, NJ, USA: ACM Press,

2005.
[4] W. S. Humphrey and M. I. Kellner, Software process modeling: principles of entity process models. Pittsburgh, Pennsylvania,

United States: ACM Press, 1989.
[5] P. Naur and B. Randell, "Software Engineering: Report of a conference sponsored by the NATO Science Committee," Brussels,

Scientific Affairs Division, NATO (1969), Garmisch, Germany 7-11 Oct. 1968.
[6] B. Randell and J. N. Buxton, "Software Engineering Techniques: Report of a conference sponsored by the NATO Science

Committee," Brussels, Scientific Affairs Division, NATO (1970), Rome, Italy 27-31 Oct. 1969.
[7] B. Curtis, H. Krasner, and N. Iscoe, "A field study of the software design process for large systems," Commun. ACM, vol. 31, pp.

1268-1287, 1988.
[8] H. Garfinkel, Ethnomethodology's Program. Working out Durkheim's Aphorism. Lanham, Maryland: Rowman & Littlefield

Publishers, Inc., 2002.
[9] M. Lynch, Scientific Practice and Ordinary Action: Ethnomethodology and Social Studies of Science. New York: Cambridge

University Press, 1997.
[10] J. Hughes, V. King, T. Rodden, and H. Andersen, Moving out from the control room: ethnography in system design. Chapel Hill,

North Carolina, United States: ACM Press, 1994.
[11] S. Sakthivel, "Virtual workgroups in offshore systems development," vol. 47, pp. 305, 2005.
[12] P. Beynon-Davies, "Ethnography and information systems development: Ethnography of, for and within is development," vol.

39, pp. 531, 1997.
[13] D. E. Forsythe, "It's Just a Matter of Common Sense: Ethnography as Invisible Work," Comput. Supported Coop. Work, vol. 8,

pp. 127-145, 1999.
[14] H. Garfinkel, Studies in ethnomethodology. Englewood Cliffs, NJ: Prentice-Hall, 1967.
[15] M. Lynch, "Silence in context: Ethnomethodology and social theory," Human Studies, vol. 22, pp. 211, 1999.
[16] G. Button and P. Dourish, Technomethodology: paradoxes and possibilities. Vancouver, British Columbia, Canada: ACM Press,

1996.
[17] R. H. R. Harper, "Radicalism, beliefs and hidden agendas," Comput. Supported Coop. Work, vol. 3, pp. 43-46, 1995.
[18] J. A. Hughes, D. Randall, and D. Shapiro, Faltering from ethnography to design. Toronto, Ontario, Canada: ACM Press, 1992.
[19] D. Shapiro, The limits of ethnography: combining social sciences for CSCW. Chapel Hill, North Carolina, United States: ACM

Press, 1994.
[20] W. Sharrock and D. Randall, "Ethnography, ethnomethodology and the problem of generalisation in design," Eur. J. Inf. Syst.,

vol. 13, pp. 186-194, 2004.
[21] J. Heritage, Garfinkel and Ethnomethodology. Cambridge: Polity Press, 1984.
[22] M. Lynch, Art and Artefact in Laboratory Science: A Study of Shop Work and Shop Talk in a Research Laboratory. London:

Routledge and Kegan Paul, 1985.
[23] B. Latour and S. Woolgar, Laboratory Life: The Construction of Scientific Facts: Princeton University Press, 1986.
[24] A. M. Davis, E. H. Bersoff, and E. R. Comer, "A strategy for comparing alternative software development life cycle models,"

Software Engineering, IEEE Transactions on, vol. 14, pp. 1453 - 1461, 1988.
[25] N. Wirth, "Program development by stepwise refinement," Commun. ACM, vol. 14, pp. 221-227, 1971.
[26] E. J. Conklin and K. C. B. Yakemovic, "A Process-Oriented Approach to Design Rationale," Human-Computer Interaction, vol.

6, pp. 357-391, 1991.
[27] F. M. Mehmet Aksit, "Deferring elimination of design alternatives in object-oriented methods," Concurrency and Computation:

Practice and Experience, vol. 13, pp. 1247-1279, 2001.
[28] D. D. McCracken and M. A. Jackson, "Life cycle concept considered harmful," SIGSOFT Softw. Eng. Notes, vol. 7, pp. 29-32,

1982.
[29] W. Curtis, H. Krasner, V. Shen, and N. Iscoe, On building software process models under the lamppost. Monterey, California,

United States: IEEE Computer Society Press, 1987.
[30] J. M. Carroll, "Human-computer interaction: Psychology as a science of design," Annual Review Of Psychology, vol. 48, pp. 61-

83, 1997.
[31] M.-A. D. Storey, F. D. Fracchia, and H. A. Muller, "Cognitive design elements to support the construction of a mentalmodel

during software visualization," presented at Fifth Iternational Workshop on Program Comprehension. IWPC '97., Dearborn, MI,
USA, 1997.

[32] J. H. Jahnke, A. Walenstein, and P. s.-. 31, "Reverse engineering tools as media for imperfect knowledge," presented at Seventh
Working Conference on Reverse Engineering, 2000.

[33] J. Conklin and M. L. Begeman, gIBIS: a hypertext tool for exploratory policy discussion. Portland, Oregon, United States: ACM
Press, 1988.

[34] M. S. Ackerman and D. W. McDonald, Answer Garden 2: merging organizational memory with collaborative help. Boston,
Massachusetts, United States: ACM Press, 1996.

[35] W. S. Humphrey, "Characterizing the Software Process: A Maturity Framework," IEEE Softw., vol. 5, pp. 73-79, 1988.
[36] E. L. Hutchins, J. D. Hollan, and D. A. Norman, "Direct Manipulation Interfaces," Human-Computer Interaction, vol. 1, pp. 311-

338, 1985.

	INTRODUCTION
	RESEARCH SETTING AND METHODS
	The setting
	The ethnography

	RESULTS
	DISCUSSION OF THE RESULTS
	ACKNOWLEDGMENTS
	REFERENCES

